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ON THE INITIATION OF DETONATION
IN A ONE-DIMENSIONAL SYSTEM

This Technical Report is meant only for internal review,
as it would be difficult to imagine the contents are not
known to those active in the field. The purpose in writing
it is to provide Institute members with a concise discussion
on the computation of the flow behind a shock leading to
detonation in a one-dimensional system. The computation
would be performed using the method of characteristics, and
this reduction would also be utilized later for our investiga-
tion of the stochastic initiation of detonations. Stochastic
effects might be introduced either as white noise or as
variations in material properties such as so-called "hot spots.”
Mathematically these effects would appear as part of the
"driving-terms' in the characteristic formulation. Consequently
the éurpose of the present Technical Report is to be viewed
primarily as a supportive document for our research effort on
the stochastic initiation of detonation.

The present deterministic system is supposed to consist
of material whose equation of state resembles that of a
polytropic gas. We assume that the system is originally shocked
by an infinite piston moving at a constant velocity, and that
this shock is sufficient to start certain chemical reactions.
These reactions initiate a detonation front (shock wave), which
in turn will propagate through the system and sustain the chemical

reactions in a zone immediately behind the front. The reaction




is assumed to transform undetonated substance into a material
with similar thermodynamic properties, plus a certain amount
of heat energy. The rate at which heat energv is released
depends on the local thermodynamic, and progress variables.
At this point we introduce the notations that are used

in this work.

X - distance measured from an original point
t - time measured from the initial point
u - particle velocity
p - material density
T - specific volume, Tt = %
S - specific entropy
e - specific internal energy
q - heat energy
i - specific enthalpy, i = e + pt
¢ - velocity of sound .
- pressure

- temperature

- adiabatic constant

- shock velocity

P
T
8
c - specific heat at constant specific volume
U
g - dg/dt

kl, kz, a,, a,, bl' bz, p UA' Q, vy, are constants

oi

AT — — —~——
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Given Data Thid Y
- oot BT
U, - piston velocity ‘ Uum{ff‘l;na
p, - density of unshocked gas -
V-t
Q - energy of formation of detonation products e
k,, k, - Constants in the rate equation CoAny "';;R
1’ "2 T e A
a;, ap, bl' b2 - constants in the iteration routines pua%
Y - equation of state constant \
t:oo’

N, - number of points on each c* characteristic

We also introduce the following notation for derivatives.

3A J9A ;. _da_ 23
Mgt = T A T gE At e T gE iy

1. The Mathematical Model:

In the regions of space-time in which shocks are absent the

flow is to be governed by the following conservation equations.

(mass) pp + up, + ou, = 0, (1.1)
1

(momentum) u, +uu, + = p, = 0, (1.2)

(energy) TS = d =e + p% . (1.3)

Outside of the reaction zone (3) may be replaced by S = 0;
that is the entropy does not change along a particle-path or
stream-line. In the reaction zone it is convenient to express

the energy balance (1.3) by the following.
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q := Q8 = e + pr, (1.3")

and

g = g(p,p,8), (1.4)

where g(p,p,B) is a function of the density, the pressure, and
the progress variable B which describes the chemical kinetics
of the material.

The questions 1.1, 1.2, 1.3', 1.4 are a system of first

order partial differential of the form,

L.(¢]:= a 297 +b 3¢ +ec, =0 (1.5)
il6l:= a5 =g + By g+ ¢4 » -

(i =1,2,3,4), (j =1,2,3,4),

where the coefficients a, b, ¢, depend on x, t, ¢k. A necessary
and sufficient condition is given for the existence of

characteristic directions for this system of equations, that

1s conditions (for the existence of curves Cy» such that a
directional derivative A;L; may be formed in the same direction
as Ck. [11, [2] The necessary and sufficient conditions for
characteristic direction is that the following homogeneous

equations for the A; be compatible [1], (2]

Milagye st +eyxp) =0, (1.6

3 =
Mi(byqo," + ¢,85) =0,

T eERT Y T ——gy— -
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where j = 1,2,3,4. 1If one sets the determinant of the first

four equations

- I =
{aijtc bijxo‘ 0,
. . . dx X5 .
we may obtain an algebraic relation for Ik -~ By making
o
the following association
1 2 3. 4

and formally computing this determinant one obtains
2
(ut_-x_)
_ g ¢ 2 2 _p
Haijt:c - byl = — ([uto -x,1%- vt 2. (1.7)

The characteristics are then given by the equations

I, _: ut, - x = ttg"-R;p = +t_c, (1.8)

Iy (ut -xo) = 0. (1.9)

The first two I, I_, represent the paths of sound waves, whereas ’

the second two (a double root), IO' are degenerate characteristics

and coincide with the streamlines. ‘
The remaining equations in the system (1.6) give rise to

compatability conditions on the thermodynamic variables in

order that (1.8) and (1.9) be characteristics. Corresponding

to the characteristics I, _ we have the compatability conditions,

P
IT, ¢ 4ouy + -2 = qgo LD (1.10)
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and corresponding to IO’ we have

IT, : N_ = gt_. (1.11)

Because the flow is non-adiabatic in the reaction zone
(S # 0) one can not introduce Riemann invariants by integrating

I, _.

?

2. On the Numerical Computation of the Characteristics:

In this section we will develop a method by which the
characteristics can be approximated. We shall assume that
two neighboring points P2, P3 are given on an I_ characteristic,
and that P, lies on the I_ characteristic through P,. Further-
more, the image points* in the (u,p)-plane, Tys Toe T3 will
also be assumed known. If the points P, are sufficiently
close the characteristics, which join them may in general be
approximated by parabolic arcs. In this case, we may write that

on I, one has

e

11
dx 1 f

NP
t‘i-tl 2- L a?

or by introducing a bar and double subscript for the average

value at two positions,

* For each point P e (x,t)-plane there corresponds an image
point

T ¢ (u,p)-plane, given by the correspondence u :=u(x,t),

!

p :=p(x,t).

YT et gy = —




= 0. 5 A
I, £,°t, Uy, *t Sy, (2.2)
The compatability condition, II_, become
u,-u; -~ 3 3 £ty |
pa-pl - ‘[}—c} * ZQ‘{%} {pa-pl; ' 2.3
401 1 16 V4L
On I_, and II_ one has respectively
X, =Xy ~
4 73 — S
=u - c ’ (2.4)
and
U, =Un ~ ¢ 1) t,-t
4_ 3 2 [_%1 - zq(&] [_ﬁ:_i} (2.5)
P4~P3  \PCI34 €J34\P47P3

In order to obtain a first estimate of U, Py SA’ we
replace the secants TA 1 4T3 by the tangent lines at "1 and
T3, that is by the lines drawn through Ty and Ty with the

respective slopes

8, - - (), sl )
and
$),- (4, -, @ (2.0

The intersection of the tangent lines vields an estimate
for the point Ty na* ,=(uz, pZ), which we use to estimate

04, and Ca.

A ~ G T gy =
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If our material is a polvtropic gas, then it obevs an

equation of state having the form,

\ ¥ ;-S'SO-:

p = (v-1)g eng_C_‘i (2.8)
where SO an appropriate constant. Since, we have an estimate
for PA' knowledge of either S or ¢ at 7, implies knowledge of
the other. We may obtain an estimate of S, bv making use of
the degenerate characteristics, IO, IIO. Along IIO we have

= P = -
TS, S, Q8 gt,, (2.9
(v-1)o C_
or r ~l
- |59-S 2
0! L S, = exp;—t——} gt (2.10)
- Lo¥r Jd
v
We estimate §, = SA* by assuming the streamline passes
through Pl and Pa, and then
*o - -
iﬁ——il = Ejg exp [So Slw (2.11)
L4t {j LS -
and which in turn allows us to approximate o, = ca*. An estimate
for c, may be obtained from
o *
~ * 1S -S -
2 {3p] * *yv-1 1“4 0. (2.12)
c,” = |- = yp, =y(v=-1)(p, ) exp !
4 Lso}a 4 4 !_ Ty !
* - . %47
A point P[+ may be found by computing the ratios T
X, =% . 4 "1
4 "3 £ h . 1 Y %
iZ:EE rom the approximate values u, , ¢,

P ol Skt o - —




We recall, that in order to appro%imate S, at P, we
assumed that the streamline passed through Pl’ PA' To improve
this estimate we may compute the slope of Io at Pa, and obtain
the intersection of this line with I or I_. (See Figure 2).
We call the intersection PS’ which we estimate by
X, -Xe ~ ~
4775 (dx] *
— = =u, = u (2.13)
The value of u, S at P5 may be obtained by interpolation using
the values of u, S at Pl’ PZ’ P3. The secant of the IO through
P&' PS then has the slope
X, X
4 75 1, *
— 2 = Z(u, +us) . (2.14)
t,-ts 2' 74 775 _—
We may obtain an improved apnroximation of SA' now using

the difference expression,

- J. (2.15)

where averages are taken from values obtained at P5 and the
first estimates at P,. With this value of S, we can obtain
another estimate for 0y from the equation of state. Using
these new estimates of O PA’ 54 etc. We may now improve our
location of T in the (u,p)-plane by means of the difference

formulae for secants instead of the tangent approximation.
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If the differences between first and second estimates
appears too large, it is suggested that the procedure outlined
above be repeated. We include at this point details from the
scheme to compute the flow behind the shock, which we assumed

is strong. Furthermore, we restrict our investigation to the
(-kzc]

consideration of reaction rates of the form g:= k, exXp
Our scheme consists of three routines which we lable (A), (B),

(C). These are indicated in what follows. We use

(A) for general points,
(B) for piston path points,

(C) for shock points.

We intiate our calculations at point A (See Figure 1), and

calculate

=t = - Ytl 1/2
Uy = 177 upe Pp = o Uy 9ps P4 = 1T Por Ca =2,

- = -KyD/D
BA 0, and 8a k1 C "2°A A.

Then let us use the symbol
3 to indicate a generic variable, i.e. y = U, u,p,0,c,8,g, and

let Yoo = Yo X

, Yoo © Ugo t

00
Use routine (B) tc get the solution at point 10.

(here A=1, oo=2, 10=3)

Use routine (C) to get the solution at point IN. Divide Cl+ into

N parts and interpolate for the values of the variables, i.e

Xyt X0t § (xyy-xp0)




vi5:= Y10 * (®y5 - ¥10)

Calculate 20, 21,..... 2N, 30,

FIGURE 1
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POINT - SUBROUTINES
INITIALIZATION -

on .ov ont on (0) _ (0) _ (0) _ (0) _

Ugg “U3, Upg ZUy 0 C34 =C30 Cy =Chs Py =Pqy ppg =Py 934 =930 9p4 =9,

(0) _ (0) _ (0) _ (0) (0) _ (0) _ (0) _

X, ' = ﬂa =0, :a o, P4 =0, P4 =0, 9, = ma =

|
SET n=1
[ . n) . (n) (ny—;1n)

Calc. xa ’ na ’ va . 5
ﬁ =

: g(n-1) , (n=1) _y(n-1),. (n-1)

U3s 34 24 Ca4

(n) _ {n-1),.(n-1) (n)

g = kg (U T el Ty (g™ k)
(n~-1) (n-1)
Az 1) _(n-1),,(n) (n-1) (n-1) ,, (n) (n-1) .(n-1)

gm_ (h0logy “Ta3q Tty Tty m0yy " 924 (b4 ") MPP3Pyte3q  Caq  Ystfaq Caa

4 (n- HVOA: 1, on- -1) A: 1)

P34 34 P24
sz Py- %Hnwvnwu|HVAcA=vlc )+ (y- ~VOow= Hvawu pvanhavlnuv

O

U

il

e o




. b(n‘iw(i—ﬂ
- (0 ()] — [ SET j = 1 gl o 24 5
5 4 | ? — | Uss - 2
Subroutine AA —;]
'S
- YES (3) 2
TRST, t2 tl > ts =
'I&o
(n) (3) ¢ (n} : :
X,=X) eI 17%X4 - S12t1%Ug5 ty . xé3)=x£n) (J)(t:n) téj)
T12 E“‘” 5 G 7
Uss 12
l Y
£ YES
NO L, YES
l ¢ TEST, Xy=X) —— l
or
bx1<x,5by%y
. . u, U U,=0
U 3 2y +(xT-x,) {_Ez_l ul3) my +(t(a) ey 21
5 1 5 1 X=Xy 5 1 1 tz-tl
EST
TEST . . .
(j=-1) (3) (§=1) | _NO NO (3-1) (3) (3=1)
a,Ug < ug'd<ayug p-—-—-)@ 1, U, <ug Y <a v,
_ ABVARCE S _
IYES ADVANCE 4 | v YES
() _ (3) _
e = 1(_5___):.1_ @ \ = ts tl
X =% t-t,
Ps = P1*3(Py=Py) x5, x5, tg=eld)
by = ol+9(pz-ol)
= - Pe = py *+ l(p -p )
85 Bl+6(82 81) S 1 2 71
Pe = Dy + A(Py=04)
xg = x81, egme D) 5771 27"
‘L -

|

\
4

P4 epg
Pys™—7—

- 13

1/2 - ko5
1Fg=k, (1-8)e
s=ky(1-B5)e —p=

—
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Subroutine AA (Cont'd)

?

' ‘
| - !
| TEST, ty = t; YES _4 tg = t, B 5
b '
_o(m) (30, (n) _ ’ ‘
T *37¥1 ) B 45 &4 "513% olx {3 ax (M) g (D) (M) ()
13 7 E-F; S : | A B R I
4 |
1
Y

NO TEST, Xy = X, YES
or
byx)<x3<byx, |

. . U,=U . . (Uc=U,)

(3) (3) (V3™ "1) (3) (3) 5 -1 :

Uz =0, + (%" =x,) U/ '=U +(te’ ' =-¢t,) —
5 1 5 1 (x3-xl) 5 1l S 1 (t3 El) :
N 1

__<l L‘
TEST TEST |
. . . NO NO . A .
(3-1) . (3) (§-1) “""'*659"“"“"‘ (5=1) _..(3) (3-1) ’
a,Ug” " <Ug" 23,05 a,Ug" " Ug7 faylg

|

YES JL

(3) _ -
. x5 x1 ‘- t5 tl
X37%) 5%

Ps= Py *+ 8(p3-p))

cgm oy + 8(03=0) Pg™ 2y * tlo3may)
Bg= Bg + 8(85-8)) Bg= 1 * M(B378))

! 'E) < Y

éijr"““iﬂlrif/r" — . —~——
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(:;)-——)' Calc :én),gin), Sén)'cin)
1/2
(n)
(0) (0) (0) (0) _ {.pa )
= ., g = geco = . C = ly“4
4 5¢ 94 5¢ 4 5' “4 S TR,
-4
_{m=1)
Jm o _ P4 *Ps cm _ (yPas |1/2
45 2 ’ 45 o {m)
45
(n) (m) _(m) (n)
(m) Py -Pg=( -1)Q 45 945 (tg " -tg)
Py  =Pg *+ -
m
(m) _ (m) (n)
(m)
g -k,p
gim)- kl (1 Bgm)) e 2 :
Py
TEST, ala‘(m-l)iaim)iazaim-l)
NO_ ADV::NCE ,@
a = p5,8,9 *
YES L
(n)
(n) Py 172
P a (M) (n), 4(m (n) , o(m) (n) 3—(—)-
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Ay
I
K"
(n)
L(m _ %3 T w= U
34 ) ’ » 1€
(n)
a(n) a, + a, Y -
24 2 4 - U.O:C
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B PISTON PATH POINT
(0) _ 0) _ (0) _ (0) _
035" = 9 231 T 9 X370 = °3 0 . .
C. U
3 A
0) _ (0) _ (0) (0) _
932 T 93 931 =9 t3 93 =0 Cy+U,
12 ‘2 -
0) _ (0) _ (0) _ (0) _
€32° T ¢S, €310 =9 Py 83 0
SET % = 1{
By
¥
(2~1)
¥ % U - (U3, - C3y )ty
3
(2-1)
Up = U3p * C33
(1) _
Xq 3 + UA t3 - UA tl + Ua(t3-tl)
3 - -
o o pitlopy - (v-1) 0 o{¥T (glF D (elM k)
03 = Ol +
(2-1) 2 (8, - 8.)
c3 Y 3”8
(%) _ (2-1) (%)
=2l -k (2)
o) =k, 1-p{HT e 283
Py
(2) 4 1/2
<) . [ Yoy ]
3 ";;TT‘
B,

tgﬁm&ﬂ‘k
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B,
v
TEST
(2-1) __(Q) (2-1)
al Q3 _(!3 : a2 :13
1
——] N
NO a =X, t, P, £, 3, g YES
N L
1, + af? 0
a32 5 =0, g, B' C SET 0.3 = 33
@ =%, t, p, 0, 3, ¢
a, + agﬁ) LIST
C"31 5 s & =0, g, B, C x3l t3’ p3r 031 93' 831 U3r C3
ADVANCE % NEXT POINT
8
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c SHOCK POINT
|
¥ 1
INITIALIZATION {
(0) .. |
gl g _otl s %t
31 1 €3 = =T ®e U3z =z 3
~ +n
(0) _ o P3Toy
€327 ©2 °32 > x{0 =0, - £{P=0, g{® =0
(0) U
gs5 =g (0) . 271
32 92 R T I T I LI C S
JSET q=1
> ;‘Lcl
) (9-1) | (gD ¢ . g{a-D)
N CTI S (Uy *C33 7ty - U3] Ty
3
(g-1) (g-1) _ [,(g-1)
A Uz 7+ C3; Usi
xéq) = x; + Ué?-l) (téq) - t)
(q) _ (g-1) (g=1) _ _ (g-1) ., (@) _
P53 = Py P35 C33 (U3 Uz) + (v l)Qo32g (t t2)
k5 voi®1/2 fiv+1p{@ 1172 2ui%
(@ a2°3 (@ [ 3 ol | 3 slay 293
93 18 Ty 3 D J , 3 |25, Y3 v+
3 L 4
30 __Test, a, aéq'l)i aéq):azaéq'l) @ =X, t, 0, g1 YES
(q) [
Q.23 7% U SET 2, = ai®
320 7 ¢ ¥ 0, G UGy 33 T %3
a= X, t, p, g, u, C
l LIST
¥31%31°31931431Y3133131 31
ADVANCE q
L C1
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3. The Characteristic Eguaticns in the Steadv State.

The description of the one-dimensional, steadv-state,
detonation of an ideal gas may be found in [4]. 1In this section
we shall use their solution in order to obtain the steady
state characteristics, I,,.- These characteristics will be
useful to us in solving for the transcient characteristics

In the undetonated region the specific enthalpv may be

represented in the form ([3]

.Y - .
1 = 3=T pOUO + Q CPTO + Q3 (3.1)

right after the shock front (but before any reaction occurs) we

represent it as
i=s7PUy +Q=10cT; +Q. (3.2)
By combining these two equations we may obtain the shock condition

P 2

In the steady state situation, the reaction zone will be
seen to move (with a constant velocity D) in a manner such that
there is no time variation of thermodynamic variables in this
region. From the equations of conservation for mass and momentum,

/P -P
the detonation velocity may be expressedas D = U 53352 {3.3)
0 "1.
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In the case of steady state this formula, however, is valid not
only for the pair (pl'Ul) right after the shock, but for any
pair (p,U) in the reaction zciie. Tfrom this one obtains a p,U
relation for positions in the reaction zcne (the Rayleight-

Michelson line) (31,

P =Pyt usr (Ug=0) (3.5)
As has been pointed out by numerous authors; see to name
a few [1]-[4] the three conservation equations (mass, momentum,
energy) , plus the equation of state are not sufficient to
uniquely determine the detonation velocity. Howver, by using
the Chapman-Jouguet hypothesis the detonation velocity is given
by
D=u+aat B8 =0. (3.6)

At a position in the reaction zone, where the fraction of
nonreacting molecules is B8 the enthalpy may be expressed as,
i = Y .
1 y-T pU + BQ; (3.7)

if we combine this with the expression for the initial enthalpy

({before detonation) one has

T U+ (8-1a = 2 pwyrw) . (3.8)
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Combining these with the p,U relation on the Rayleigh line (and
assuming Py is negligibly small) we obtain p,U in terms of the

progress 3, [4]

2 [ \/ 2 - }
= _0D + - 2(y"-1)0(1-8)

U 2 »
u(g) = Y_SYI [1 re %\ﬁ _ 20y -lZ)Q(l-B) }
D

It is convenient to introduce local coordinates in the moving

reaction zone, defined by a point transformation from the (x,t)-

plane to the (&,t)-plane:

o
il

tD - x, (3.10)

-
H
(2
[
G %

The variable £ is the distance from a position x to the shock
front, whereas tv is the time that has elapsed after the front
has passed the point x. We may express { and t in terms of 8 by

means of a single quadrature as follows. From equation we have

8% glo,p,B) =g [U—]('m-.p(ﬁ). s)z s (8, (3.11)

consequently upon integration one has

T 8
T Jodr | FUET Fs), (3.12)
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and

£ 8
£ = [ ag = .r E%g-,’—]de =8 3 (3.13)
Jo J1
where
u(B) = [p(B)=pyl[Uy= (B)] = p(B) [ 4= (B) 1. (3.14)

Elimating 8 between T ="¥ (B) and £ =ﬂ (B), yields an expression
for ¢ in terms of 1, £ =v[-{1(r)]. |

In the steady-state it is clear that the characteristic
lines, I, correspond to the straight lines 8= constant, or
I, : x=tD+ (B-1)L, where L is the reaction zone length. In
order to obtain I_, we return to equation (1.8) I_: g% = u(8)

- a (B), and compute a(B8) from

a(8) = [%S] = yp(B)v(B), (3.15)
]
a(8) = 2 ‘\q/;‘Yz‘l’(l‘B)Q s -4 11 :\V/ 1 - 20y°-1) (1-g)0
v=1 D Y = -7
(3.16)
dx

Consequently, on I_, the slope ac is given as the following

function of B8

22 2 )
&x . Dy [2(Y D9, o L {1'35¢/ 1 - 24y —:%(1-3)5%}

(y-1) ¢ D

. gf;q/ Z(YZ-I)%;-B)Q s oL 1 ;\\/; _ 2(y*-1) (1-8)Q
Y- Yy o=

Y D2

(3.17)
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It is clear from the above discussion that all the "cross-
characteristics,” I_, cut the lines B8=constant at the same angle,
and hence the I_ form a "parallel" family of curves. From the
information connecting £, 1, and 8 we may start at the shock
front, compute the slope of I_, and then proceed by finite
differences across the reaction zone. The computation of one

cross-characteristic will then yield the entire family.

L 4. A Progressing Wave Interpretation:

In this section we attempt to solve the system of partial
differential equations (1) (2) (3) (4) in terms of a similarity
variable [1] [4] £ = xt™®. We introduce this variable in order
to reduce a system of partial differential equations to a system
of ordinary differential equations.* We make the assumption

that the solutions u, p, p, have the form

axt~tu(g) .,

[
)

p = x%a(g), (4.1)

and

p = azxk+2t-2P(E).

In addition we introduce,
B = B(&),

and

a?x%t™2 p(g)  ax2e?

ea__ﬂ__mr:_——-—rE(g) (4.2)

*We note, however, that these solutions cannot approach the steady-
state case discussed earlier, since here the reaction zone
continues to grow in length.
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Equations 1.1, 1.2 may then be written respectively as

(U-1)5Q' + KUQ + 2[u+sU'] = 0, (4.3)

UaU-1) + agU' (U-1) + a(k+2) % + 222 =0, (4.4)
where primes indicate differentiation with respect to £. Equation

1.3 becomes

2,-2 2(a-1) o _ gg_

QEB' = ax"t -m— (U-1)£Q"' + KUQ) ’ (4.5
Q

and then in order for B to be a function of £ alone we must
have a = 1, or £ = %. Equation 1.4 reduces to

GE(U-I)B' = tq(o.p.B): (4.6)

consequently, for there to exist a similarity solution (progressing
wave) for our case tg(p,p,B) must be expressible solely as a
function of §. This amounts to a mathematical restriction on

the type of rate function we may use; however, as we shall see,

it does not impose an important physical restriction. For
instance, it is customary to use rate functions of the form [3]

(4]

L] e
8 = c8®texp [- €—°] (4.7)
where € is an activation energy. In this case equation (3.6)

becomes

af(U=1)B' = tc8 x Q exp —— (4.8)
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which will be an expression in £ alone, if x5te = £~ or
k = -% + £ # 0. The system (4.1) - (4.4) then takes on the
form
(U-1)€2' - 3 @ + Q[U+EU'] = 0,
R(U-1) [U+£U'] + €P* + (2- PP = 0,
eea’s’ + g?p((u-Dgn’ - ¥ val = o,
and
(1-v)e
£2(u-1)B* = cB®* exp —2. (4.9)
ETE(E)

This system may be solved for the first derivatives U', Q',

P', B', as follows

(1-v)e,Q
' = 1 - i+1.m 0
U E—(U_"IT { U+CQQ B exp ‘ } (4 . 10)
L+2pm [(1-v) e Q
. UQ cQf 0
Q' = — - exp ' (4.11)
v El(U-l)zP % }
[(1-v) e, 0
ek o2) B aogtt2gm 0
P (2 2) g cQnN B exp —Ezp——] . (4.12)
'ITE‘I) A B A (4.13)

The equations (4.10), (4.11), (4.12), (4.13) are a system of four
ordinary differential equations in four dependent variables.
The four equations are essentially different as is illustrated

by solving for uU', Q', P', B', and may be solved by numerical

methods,
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